Voacangine, a naturally occurring alkaloid, has been testified to display beneficial effects on a variety of human diseases, but its role in ischemic stroke is unclear. The impacts of voacangine on oxygen-glucose deprivation/reoxygenation (OGD/R)-tempted hippocampal neuronal cells are investigated. The bioinformatics analysis found that voacangine is a bioactive ingredient that may have good effects on ischemic stroke. KEGG pathways analysis found that voacangine may regulate ischemic stroke through modulating the PI3K-Akt-FoxO signaling pathway. Voacangine could mitigate OGD/R-tempted cytotoxicity in HT22 cells. Voacangine mitigated OGD/R-tempted oxidative stress in HT22 cells by diminishing reactive oxygen species level and enhancing superoxide dismutase level. Voacangine mitigated OGD/R-tempted ferroptosis in HT22 cells. Voacangine promoted activation of the PI3K-Akt-FoxO signaling in OGD/R-induced HT22 cells. Inactivation of the PI3K-Akt-FoxO signaling pathway reversed the protective effects of voacangine against OGD/R-tempted oxidative stress, cytotoxicity, and ferroptosis in HT22 cells. In conclusion, voacangine protects hippocampal neuronal cells against OGD/R-caused oxidative stress and ferroptosis by activating the PI3K-Akt-FoxO signaling.
Keyphrases
- induced apoptosis
- signaling pathway
- oxidative stress
- cell cycle arrest
- endoplasmic reticulum stress
- pi k akt
- cell death
- type diabetes
- dna damage
- epithelial mesenchymal transition
- reactive oxygen species
- diabetic rats
- blood pressure
- adipose tissue
- cell proliferation
- ischemia reperfusion injury
- skeletal muscle
- heat stress
- bioinformatics analysis
- stress induced