Login / Signup

Nickel(0)-Induced β-H Elimination of Magnesium Alkyls: Formation and Reactivity of Heterometallic Hydrides.

Jiasu HuangXizhou ZhengIker Del RosalBei ZhaoLaurent MaronXin Xu
Published in: Inorganic chemistry (2020)
We report the synthesis and reactivity of heterometallic Mg-Ni complexes with bridging hydrides. Treatment of magnesium monoalkyl complexes, which are supported by a tridentate β-diketiminato ligand bearing a pendent phosphine group, with nickel(0) reagent Ni(COD)2 (COD: 1,5-cyclooctadiene) at a molar ratio of 2:1 resulted in the formation of a heterotrimetallic hydride-bridged [Mg-Ni-Mg] complex via facile elimination of the corresponding alkenes. A heterobimetallic hydride-bridged [Mg-Ni] complex served as an intermediate species for the formation of the [Mg-Ni-Mg] complex. Computational studies revealed that the reaction was initiated by coordination of nickel to magnesium followed by an alkyl group transfer. β-H elimination at the nickel center subsequently occurred to give the heterometallic hydride-bridged complex. Density functional theory analysis also highlighted a three-center two-electron interaction for the Mg-H-Ni unit. The hydride-bridged [Mg-Ni-Mg] complex showed diverse reactivity toward unsaturated small molecules. For instance, reactions with isocyanides provided heterometallic species by coordination of isocyanides to the nickel center, with no subsequent reduction detected. Isocyanides could also be dissociated at 80 °C. In contrast, hydromagnesiation occurred upon treatment of the heterotrimetallic hydride with carbodiimides, affording C3-symmetric complexes with three heteroleptic magnesium mixed β-diketiminate/amidinate moieties. The hydride-bridged heterotrimetallic complex underwent dehydrogenation reaction with phenyl acetylene to produce an acetylide-bridged [Mg-Ni-Mg] complex.
Keyphrases
  • metal organic framework
  • density functional theory
  • reduced graphene oxide
  • molecular dynamics
  • high glucose
  • combination therapy
  • endothelial cells
  • contrast enhanced