Login / Signup

Folate Receptor-Mediated Renal-Targeting Nanoplatform for the Specific Delivery of Triptolide to Treat Renal Ischemia/Reperfusion Injury.

Caili HuangTao ZengJiawen LiLishan TanXiulong DengYanchao PanQi ChenAiqing LiJian-Qiang Hu
Published in: ACS biomaterials science & engineering (2019)
Triptolide (TP) has been widely used in clinical medicine; however, it has created a dilemma due to its toxicity and nonspecificity. Here, we reported a biocompatible and high-efficiency renal-targeting nanoplatform for renal ischemia/reperfusion injury (IRI) therapy, in which the toxic drug of TP was encapsulated into folate (FA)-modified Pluronic F127/P123 nanoparticles (FPNPs). The TP-loaded FPNPs (TP-FPNPs) had good stability and could effectively reduce the cytotoxicity of TP. Compared with the Pluronic nanoparticles (PNPs) group, cellular uptake ability of FPNPs significantly improved because of folate receptor-mediated endocytosis effect. Ex vivo organ imaging and pharmacokinetic results indicated that FPNPs possessed high kidney selectivity and long retention time. The therapeutic effect of TP-FPNPs on renal IRI was more superior to that of free TP, such as lower acute tubular injury index (2.9-fold), renal function indexes of serum creatinine (4.3-fold), urea nitrogen (2.0-fold), and Western blotting (2.4-fold). Systemic toxicity assay suggested that TP-FPNPs had much lower nephrotoxicity, hepatotoxicity, and genital system toxicity than free TP. Thus, renal-targeting FPNPs will be a potential delivery platform of hydrophobic drugs for treatment of renal diseases.
Keyphrases