Login / Signup

Sex differences in telomere length, lifespan, and embryonic dyskerin levels.

Peter M Lansdorp
Published in: Aging cell (2022)
Telomerase levels in most human cells are insufficient to prevent loss of telomeric DNA with each replication cycle. The resulting "Hayflick" limit may have allowed lifespan to increase by suppressing the development of tumors early in life be it at the expense of compromised cellular responses late in life. At any given age, the average telomere length in leukocytes shows considerably variation between individuals with females having, on average, longer telomeres than males. Sex differences in average telomere length are already present at birth and correspond to reported differences in the average life expectancy between the sexes. Levels of telomerase RNA and dyskerin, encoded by DKC1, are known to limit telomerase activity in embryonic stem cells. X-linked DKC1 is expressed from both alleles in female embryo cells and higher levels of dyskerin and telomerase could elongate telomeres prior to embryo implantation. The hypothesis that embryonic telomerase levels set the stage for the sex differences in telomere length and lifespan deserves further study.
Keyphrases
  • embryonic stem cells
  • induced apoptosis
  • signaling pathway
  • dna damage
  • pregnant women
  • cell cycle arrest
  • circulating tumor
  • preterm birth
  • gestational age