Scanning Laser Ophthalmoscopy Retromode Imaging Compared to Fundus Autofluorescence in Detecting Outer Retinal Features in Central Serous Chorioretinopathy.
Fabrizio GiansantiStefano MercuriFederica SerinoTomaso CaporossiAlfonso SavastanoClara RizzoFrancesco FaraldiStanislao RizzoDaniela BacheriniPublished in: Diagnostics (Basel, Switzerland) (2022)
Central serous chorioretinopathy (CSCR) is a retinal disease characterized by a heterogeneous clinical phenotype, depending on the influence of different factors in its pathogenesis, including the presence of subretinal fluid (SRF), trophism of the retinal pigmented epithelium (RPE) and choroidal hyper-permeability. Our study has the purpose of assessing the ability of scanning laser ophthalmoscopy (SLO) retromode imaging, compared to fundus autofluorescence (FAF), to identify outer retinal features in a cohort of patients with a diagnosis of CSCR. A total of 27 eyes of 21 patients were enrolled in our study. All patients underwent full ophthalmological examination, including fundus retinography, fundus fluorescein angiography, optical coherence tomography (OCT), FAF and SLO retromode imaging. For each patient, the following features were evaluated: SRF, the presence of pigmented epithelium detachment (PED), RPE dystrophy, and RPE atrophy. RPE dystrophy was further characterized according to the appearance in FAF of iso-, hyper- and hypo-autofluorescent dystrophy. The ability to identify each feature was evaluated for FAF and SLO retromode alone, compared to a multimodal imaging approach. FAF identified SRF in 11/14 eyes (78%), PED in 14/19 (74%), RPE dystrophy with iso-autofluorescence in 0/13 (0%), hyper-autofluorescence in 18/19 (95%), hypo-autofluorescence in 20/20 (100%), and RPE atrophy in 7/7 (100%). SLO retromode imaging identified SRF in 13/14 eyes (93%), PED in 15/19 (79%), RPE dystrophy with iso-autofluorescence in 13/13 (100%), hyper-autofluorescence in 13/19 (68%), hypo-autofluorescent in 18/20 (90%), and RPE atrophy in 4/7 (57%). SLO retromode imaging is able to detect retinal and RPE changes in CSCR patients with a higher sensitivity than FAF, while it is not able to identify the depth of lesions or supply qualitative information about RPE cells' health status, meaning that it is less specific. SLO retromode imaging may have a promising role in the assessment of patients with CSCR, but always combined with other imaging modalities such as OCT and FAF.
Keyphrases
- oxidative stress
- optical coherence tomography
- diabetic retinopathy
- induced apoptosis
- high resolution
- end stage renal disease
- optic nerve
- early onset
- computed tomography
- newly diagnosed
- machine learning
- chronic kidney disease
- high grade
- palliative care
- systematic review
- mass spectrometry
- cell death
- case report
- cell proliferation
- deep learning
- photodynamic therapy