Light/pH-Triggered Biomimetic Red Blood Cell Membranes Camouflaged Small Molecular Drug Assemblies for Imaging-Guided Combinational Chemo-Photothermal Therapy.
Shefang YeFanfan WangZhongxiong FanQixin ZhuHaina TianYubin ZhangBeili JiangZhenqing HouYang LiGuanghao SuPublished in: ACS applied materials & interfaces (2019)
Nanoparticles camouflaged by red blood cell (RBC) membranes have attracted considerable attention owing to reservation of structure of membrane and surface proteins, endowing prominent cell-specific function including biocompatibility, prolonged circulation lifetime, and reduced reticular endothelial system (RES) uptake ability. Considering the drawbacks of carrier-free nanomedicine including the serious drug burst release, poor stability, and lack of immune escape function, herein we developed and fabricated a novel RBC membranes biomimetic combinational therapeutic system by enveloping the small molecular drug coassemblies of 10-hydroxycamptothecin (10-HCPT) and indocyanine green (ICG) in the RBC membranes for prolonged circulation, controlled drug release, and synergistic chemo-photothermal therapy (PTT). The self-reorganized RBCs@ICG-HCPT nanoparticles (NPs) exhibited a diameter of ∼150 nm with core-shell structure, high drug payload (∼92 wt %), and reduced RES uptake function. Taking advantage of the stealth functionality of RBC membranes, RBCs@ICG-HCPT NPs remarkably enhanced the accumulation at the tumor sites by passive targeting followed by cellular endocytosis. Upon the stimuli of near-infrared laser followed by acidic stimulation, RBCs@ICG-HCPT NPs showed exceptional instability by heat-mediated membrane disruption and pH change, thereby triggering the rapid disassembly and accelerated drug release. Consequently, compared with individual treatment, RBCs@ICG-HCPT NPs under dual-stimuli accomplished highly efficient apoptosis in cancer cells and remarkable ablation of tumors by chemo-PTT. This biomimetic nanoplatform based on carrier-free, small molecular drug coassemblies integrating imaging capacity as a promising theranostic system provides potential for cancer diagnosis and combinational therapy.
Keyphrases
- red blood cell
- fluorescence imaging
- photodynamic therapy
- drug release
- cancer therapy
- drug delivery
- highly efficient
- high resolution
- adverse drug
- locally advanced
- radiation therapy
- optical coherence tomography
- cell therapy
- mass spectrometry
- signaling pathway
- working memory
- bone marrow
- risk assessment
- young adults
- radiofrequency ablation
- replacement therapy
- cell cycle arrest
- squamous cell