Login / Signup

Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting.

Wooseok YangRajiv Ramanujam PrabhakarJeiwan TanS David TilleyJooho Moon
Published in: Chemical Society reviews (2019)
To accelerate the deployment of hydrogen produced by renewable solar energy, several technologies have been competitively developed, including photoelectrochemical (PEC), photocatalytic, and photovoltaic-electrolysis routes. In this review, we place PEC in context with these competing technologies and highlight key advantages of PEC systems. After defining the unique performance metrics of the PEC water splitting system, recently developed strategies for enhancing each performance metric, such as the photocurrent density, photovoltage, fill factor, and stability are surveyed in conjunction with the relevant theoretical aspects. In addition, various advanced characterization methods are discussed, including recently developed in situ techniques, allowing us to understand not only the basic properties of materials but also diverse photophysical phenomena underlying the PEC system. Based on the insights gained from these advanced characterization techniques, we not only provide a resource for researchers in the field as well as those who want to join the field, but also offer an outlook of how thin film-based PEC studies could lead to commercially viable water splitting systems.
Keyphrases
  • visible light
  • quantum dots
  • gold nanoparticles