Login / Signup

Simultaneous Analysis of Multiple Cancer Biomarkers Using MALDI-TOF Mass Spectrometry Based on a Parylene-Matrix Chip.

Jong-Min ParkMoon-Ju KimJoo-Yoon NohTae Gyeong YunMin-Jung KangSang-Guk LeeByong Chul YooJae-Chul Pyun
Published in: Journal of the American Society for Mass Spectrometry (2020)
Recently, the parylene-matrix chip was developed for quantitative analysis of small molecules less than 1 kDa. In this study, MALDI-TOF MS based on the parylene-matrix chip was performed to clinically diagnose intrahepatic cholangiocarcinoma (IHCC) and colorectal cancer (CRC). The parylene-matrix chip was applied for the detection of small cancer biomarkers, including N-methyl-2-pyridone-5-carboxamide (2PY), glutamine, lysophosphatidylcholine (LPC) 16:0, and LPC 18:0. The feasibility of MALDI-TOF MS based on the parylene-matrix chip was confirmed via analysis of spot-to-spot and shot-to-shot reproducibility. Serum metabolite markers of IHCC, N-methyl-2-pyridone-5-carboxamide (2PY), and glutamine were quantified using MALDI-TOF MS based on the parylene-matrix chip. For clinical diagnosis of CRC, two water-insoluble (barely soluble) biomarkers, lysophosphatidylcholine (LPC) 16:0 and LPC 18:0, were quantified. Finally, glutamine and LPC 16:0 were simultaneously detected at a range of concentrations in sera from colon cancer patients using the parylene-matrix chip. Thus, this method yielded high-throughput detection of cancer biomarkers for the mixture samples of water-soluble analytes (2PY and glutamine) and water-insoluble analytes (LPC 16:0 and LPC 18:0).
Keyphrases