Login / Signup

Improving the Sensitivity of the miRNA Assay Coupled with the Mismatched Catalytic Hairpin Assembly Reaction by Optimization of Hairpin Annealing Conditions.

Oleg L BodulevShu-Lin ZhaoIvan Yu Sakharov
Published in: Analytical chemistry (2021)
The mismatched catalytic hairpin assembly (mCHA), a programmable oligonucleotide circuit, is one of the promising isothermal amplification methods used in nucleic acid detection. Its limitations are related to a high background noise observed due to the target-independent hybridization of the reacting hairpins (HPs). In this work, it was shown that the introduction of salts such as NaCl and MgCl2 to HP1/HP2 annealing solutions sharply reduces the background in mCHA and simultaneously increases the signal-to-background (S/B) ratio. A comparison of the salts demonstrated the higher activity of MgCl2 as compared to NaCl. A similar effect of reducing the background was observed with a decrease in the concentration of H1/H2 probes in annealing solutions. Using the favorable annealing conditions allowed the development of an ultrasensitive chemiluminescence assay coupled with mCHA for miRNA quantitation. Except mCHA, the use of a streptavidin-polyHRP conjugate and an enhanced chemiluminescence reaction additionally increased the assay sensitivity. Notably, the optimization of the HP annealing diminished the detection limit of the assay by 2 orders of magnitude and increased the sensitivity and precision of miRNA-141 determination. The discovered fact of reducing the background by the variation of HP annealing conditions may be valuable not only for the mCHA performance but also likely for other HP-based biochemical methods.
Keyphrases