Iodine in Metal-Organic Frameworks at High Pressure.
Sergey S LobanovJohn A DalyAlexander F GoncharovXiaojun ChanSanjit K GhoseHui ZhongLars EhmTaejin KimJohn B ParisePublished in: The journal of physical chemistry. A (2018)
Capture of highly volatile radioactive iodine is a promising application of metal-organic frameworks (MOFs), thanks to their high porosity with flexible chemical architecture. Specifically, strong charge-transfer binding of iodine to the framework enables efficient and selective iodine uptake as well as its long-term storage. As such, precise knowledge of the electronic structure of iodine is essential for a detailed modeling of the iodine sorption process, which will allow for rational design of iodophilic MOFs in the future. Here we probe the electronic structure of iodine in MOFs at variable iodine···framework interaction by Raman and optical absorption spectroscopy at high pressure ( P). The electronic structure of iodine in the straight channels of SBMOF-1 (Ca- sdb, sdb = 4,4'-sulfonyldibenzoate) is modified irreversibly at P > 3.4 GPa by charge transfer, marking a polymerization of iodine molecules into a 1D polyiodide chain. In contrast, iodine in the sinusoidal channels of SBMOF-3 (Cd- sdb) retains its molecular (I2) character up to at least 8.4 GPa. Such divergent high-pressure behavior of iodine in the MOFs with similar port size and chemistry illustrates adaptations of the electronic structure of iodine to channel topology and strength of the iodine···framework interaction, which can be used to tailor iodine-immobilizing MOFs.