Login / Signup

Spectroscopy of Molecular Ions in Coulomb Crystals.

Aaron T CalvinKenneth R Brown
Published in: The journal of physical chemistry letters (2018)
In this Perspective, we examine the use of laser-cooled atomic ions and sympathetically cooled molecular ions in Coulomb crystals for molecular spectroscopy. Coulomb crystals are well-isolated environments that provide localization and long storage times for sensitive measurements of weak signals and cold temperatures for precise spectroscopy. Coulomb crystals of molecular and atomic ions enable the detection of single-photon molecular ion transitions at a range of wavelengths by a change in atomic ion fluorescence at visible wavelengths. We give an overview of the state of the art from action spectroscopy to quantum logic spectroscopy for a wide range of molecular transitions from rotational sublevels separated by 10-7 cm-1 to rovibronic transitions at 25 000 cm-1. We emphasize how this system allows for unparalleled control of the molecular ion state for precision spectroscopy with applications in astrochemistry and fundamental physics. We conclude with an outlook of the use of this control in cold molecular ion reactions.
Keyphrases
  • single molecule
  • high resolution
  • quantum dots
  • room temperature
  • solid state
  • molecular dynamics
  • label free