Potent anti-inflammatory Terminalia chebula fruit showed in vitro anticancer activity on lung and breast carcinoma cells through the regulation of Bax/Bcl-2 and caspase-cascade pathways.
Anil Khushalrao ShendgeRhitajit SarkarNripendranath MandalPublished in: Journal of food biochemistry (2020)
The present study was aimed to investigate the anticancer and anti-inflammatory activities of Terminalia chebula fruit (TCME). The TCME was evaluated for in vitro anticancer activity on A549 and MCF-7 cells. TCME showed cytotoxicity toward A549 (IC50 - 359.06 ± 20.04 µg/ml), and MCF-7 (IC50 - 61.02 ± 5.55 µg/ml) cells. The flow-cytometer analysis revealed increase in sub G1 population and apoptotic population, which were observed through cell cycle analysis and annexin-V-FLUOS staining. Confocal microscopy showed DNA fragmentation in both the cell lines upon TCME treatment. Moreover, TCME treatment induces activation of apoptosis-related caspase-cascade pathways in both the cell lines. TCME treatment on RAW 264.7 cells revealed the anti-inflammatory properties by regulating nitrite and TNF-α production; iNOS, COX-2 levels, and translocation of NF-κB protein. Finally, HPLC analysis revealed the bioactive phytocompounds present in TCME. In conclusion, the combined results showed the potent anticancer and anti-inflammatory properties of T. chebula fruit. PRACTICAL APPLICATIONS: Lung cancer is a leading cause of death in men with 35.5% incidences and 30.8% mortality rate worldwide. On the contrary, breast cancer possesses 55.2% incidences and 16.6% mortality rate among the female worldwide. The present findings revealed the anti-lung and -breast cancer activity along with the potent anti-inflammatory potentials of Terminalia chebula fruit. These findings will helpful to isolate the active drug molecules from the Terminalia chebula fruit and mark them as an anticancer and anti-inflammatory agent.
Keyphrases
- anti inflammatory
- induced apoptosis
- cell cycle arrest
- cell death
- cell cycle
- endoplasmic reticulum stress
- oxidative stress
- signaling pathway
- single cell
- cardiovascular events
- pi k akt
- emergency department
- nitric oxide
- type diabetes
- breast cancer cells
- cell proliferation
- mass spectrometry
- circulating tumor
- nuclear factor
- high performance liquid chromatography
- lps induced
- coronary artery disease
- cell free
- simultaneous determination
- binding protein
- flow cytometry
- drug induced
- tandem mass spectrometry