The effect of tethered bi-naphthyls on visible-light promoted alkene-alkene [2 + 2] cycloadditions.
Matteo HochSara SparascioAlessandro CerveriFranca BigiRaimondo MaggiRosanna ViscardiGiovanni MaestriPublished in: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology (2024)
Dispersion interactions are ubiquitous weak interactions that can play a role in many chemical events. Tailor-made catalysts and additives can lead to more selective reactions by properly exploiting dispersion interactions. Although radical-π dispersion interactions are known to have an important stabilizing role, this concept has been so far overlooked in synthetic photochemistry. We recently proved that similar dispersion interactions can play a profound impact on several reactions involving an energy transfer step. We present herein a study on the co-catalytic effect of tethered bi-naphthyl derivatives on the visible-light-promoted alkene-alkene [2 + 2] cycloaddition. A library of tethered bi-naphthyl derivatives was prepared in order to evaluate the impact of the tether on the efficiency of the prototypical [2 + 2] cycloaddition. The best performing additives showed a dramatic effect on the efficiency of the cyclization, and a rationalization of their relative efficiency was carried out through DFT modeling. The best co-catalyst allowed one to isolate desired products in good to excellent yields even employing several challenging substrates. These results offer new tools to devise optimized [2 + 2] photocycloaddition methods and provide valuable information for the design of organic co-catalyst that can boost photochemical reactions by exploiting dispersion interactions.