Dipyrrolyldiketonato Titanium(IV) Complexes from Monomeric to Multinuclear Architectures: Synthesis, Stability, and Liquid-Crystal Properties.
Alexandra SchmidtBenoît HeinrichGuillaume KirscherAlain ChaumontMarc HenryNathalie KyritsakasYohei HaketaHiromitsu MaedaPierre MobianPublished in: Inorganic chemistry (2020)
Dipyrrolyldiketone ligands (dpkH) are used with Ti(OiPr)4 to afford monomeric titanium(IV) complexes displaying the general formula C2-[Ti(dpk)2(OiPr)2]. The dpkH ligands employed consist of two dipyrrolyldiketone compounds (2H and 3H) and three diphenyl-substituted analogues (4H-6H). The behavior of these octahedral [Ti(dpk)2(OiPr)2] species in solution was investigated by 1H NMR at variable temperatures. Dynamic phenomena were evidenced, and the activation parameters associated with these processes (ΔH⧧, ΔS⧧, and ΔG⧧) were retrieved. [Ti(dpk)2(OiPr)2] complexes are precursors for the formation of high-nuclearity aggregates whose structures depend on the substituents on the diketone backbone. The crystal structures of monomeric ([Ti(1)2(OiPr)2]; 1 is the 1,3-diphenyl-1,3-propanedionato ligand) and [Ti(2)2(OEt)2]), dimeric ([Ti2(1)4(μ2-O)2]), and tetrameric ([Ti4(4)8(μ2-O)4]) species have been established, and the origin of this structural diversity is discussed. The solid-state optical properties of several complexes were determined and interpreted with the help of DFT calculations. Finally, the dinuclear complex [Ti(6)2(μ2-O)2] was synthesized, where ligand 6 incorporates six long alkyl chains (C16H33). This complex shows rich mesomorphic properties, with an original room-temperature plastic crystal phase followed by a hexagonal columnar liquid-crystalline phase.