Differently sized drug-loaded mesoporous silica nanoparticles elicit differential gene expression in MCF-7 cancer cells.
Baranya MuruganUma Maheswari KrishnanPublished in: Nanomedicine (London, England) (2021)
Aim: This study investigates the effects of different sized unmodified and chemo-responsive mesoporous silica nanocarriers on MCF-7 cancer cells. Materials & methods: Unmodified and thiol-functionalized large and small-sized mesoporous MCM-41 silica nanoparticles prepared using templated sol-gel process were characterized for their physicochemical properties and in vitro and in vivo anticancer efficacy. Microarray analysis was carried out to assess their differential effect on gene expression. Results: Thiol-functionalized nanoparticles displayed chemo responsive release and greater cytotoxicity to cancer cells when compared with unmodified carriers. Microarray studies showed distinct differences in genes differentially regulated by sMCM-41and lMCM-41 carriers when compared with the free drug. Conclusion: The small chemo-responsive carrier was more effective in suppressing oncogenes and genes involved in proliferation, invasion and survival while the large carrier mainly altered membrane-associated pathways.