Densitaxis: Active particle motion in density gradients.
Vaseem A ShaikGwynn J ElfringPublished in: Proceedings of the National Academy of Sciences of the United States of America (2024)
Organisms often swim through density-stratified fluids. Here, we investigate the dynamics of active particles swimming in fluid density gradients and report theoretical evidence of taxis as a result of these gradients (densitaxis). Specifically, we calculate the effect of density stratification on the dynamics of a force- and torque-free spherical squirmer and show that density gradients induce reorientation that tends to align swimming either parallel or normal to the gradient depending on the swimming gait. In particular, swimmers that propel by generating thrust in the front (pullers) rotate to swim parallel to gradients and hence display (positive or negative) densitaxis, while swimmers that propel by generating thrust in the back (pushers) rotate to swim normal to the gradients. This work could be useful to understand the motion of marine organisms in ocean or be leveraged to sort or organize a suspension of active particles by modulating density gradients.