Impact of Anatomical Variability on Sensitivity Profile in fNIRS-MRI Integration.
Augusto BonilauriFrancesca Sangiuliano IntraFrancesca BaglioGiuseppe BaselliPublished in: Sensors (Basel, Switzerland) (2023)
Functional near-infrared spectroscopy (fNIRS) is an important non-invasive technique used to monitor cortical activity. However, a varying sensitivity of surface channels vs. cortical structures may suggest integrating the fNIRS with the subject-specific anatomy (SSA) obtained from routine MRI. Actual processing tools permit the computation of the SSA forward problem (i.e., cortex to channel sensitivity) and next, a regularized solution of the inverse problem to map the fNIRS signals onto the cortex. The focus of this study is on the analysis of the forward problem to quantify the effect of inter-subject variability. Thirteen young adults (six males, seven females, age 29.3 ± 4.3) underwent both an MRI scan and a motor grasping task with a continuous wave fNIRS system of 102 measurement channels with optodes placed according to a 10/5 system. The fNIRS sensitivity profile was estimated using Monte Carlo simulations on each SSA and on three major atlases (i.e., Colin27, ICBM152 and FSAverage) for comparison. In each SSA, the average sensitivity curves were obtained by aligning the 102 channels and segmenting them by depth quartiles. The first quartile (depth < 11.8 (0.7) mm, median (IQR)) covered 0.391 (0.087)% of the total sensitivity profile, while the second one (depth < 13.6 (0.7) mm) covered 0.292 (0.009)%, hence indicating that about 70% of the signal was from the gyri. The sensitivity bell-shape was broad in the source-detector direction (20.953 (5.379) mm FWHM, first depth quartile) and steeper in the transversal one (6.082 (2.086) mm). The sensitivity of channels vs. different cortical areas based on SSA were analyzed finding high dispersions among subjects and large differences with atlas-based evaluations. Moreover, the inverse cortical mapping for the grasping task showed differences between SSA and atlas based solutions. In conclusion, integration with MRI SSA can significantly improve fNIRS interpretation.