Insight into the Structure of Victorin, the Host-Selective Toxin from the Oat Pathogen Cochliobolus victoriae . Studies of the Unique Dehydroamino Acid β-Chlorodehydroalanine.
Karolina BanaśPaweł LenartowiczMonika StaśBłażej DziukDawid SiodłakPublished in: Journal of agricultural and food chemistry (2023)
Victorins, a family of peptide toxins, produced by the fungal pathogen Cochliobolus victoriae and responsible for disease of some oat varieties, contain a β-chlorodehydroalanine residue, ΔAla(βCl). To determine the conformational properties of this unique dehydroamino acid, a series of model compounds was studied using X-ray, NMR, and FT-IR methods, supported by theoretical calculations. The ΔAla(βCl) geometrical isomers differ in conformational profile. The isomer Z prefers the helical conformation α (φ, ψ = -61°, -24°), PPII type conformation β (φ, ψ = -47°, 136°), and semiextended conformation β2 (φ, ψ = -116°, 9°) in weakly and more polar solutions. The isomer E prefers mainly the extended conformation C5 (φ, ψ = -177°, 160°), but with an increase of the environment polarity also conformations β (φ, ψ = -44°, 132°) and α (φ, ψ = -53°, -39°). In the most stable conformations the N-H···Cl hydrogen bond (5 γ ) occurs, created between the chlorine atom of the side chain and the N-H donor of the flanking amide group. The method of synthesis of the β-chlorodehydroalanine residue is proposed, by chlorination of dehydroalanine and then the photoisomerization from the isomer Z to E . The presented results indicate that the assignment of the geometrical isomer of the ΔAla(βCl) residue in naturally occurring victorins still remains an open question, despite being crucial for biological activity.