Mass Spectrometry-Based Quantification of the Antigens in Aluminum Hydroxide-Adjuvanted Diphtheria-Tetanus-Acellular-Pertussis Combination Vaccines.
Larissa van der MaasMaarten DanialGideon F A KerstenBernard MetzHugo D MeiringPublished in: Vaccines (2022)
Vaccines undergo stringent batch-release testing, most often including in-vivo assays for potency. For combination vaccines, such as diphtheria-tetanus-pertussis (DTaP), chemical modification induced by formaldehyde inactivation, as well as adsorption to aluminum-based adjuvants, complicates antigen-specific in-vitro analysis. Here, a mass spectrometric method was developed that allows the identification and quantitation of DTaP antigens in a combination vaccine. Isotopically labeled, antigen-specific internal standard peptides were employed that permitted absolute quantitation of their antigen-derived peptide counterparts and, consequently, the individual antigens. We evaluated the applicability of the method on monovalent non-adjuvanted antigens, on final vaccine lots and on experimental vaccine batches, where certain antigens were omitted from the drug product. Apart from the applicability for final batch release, we demonstrated the suitability of the approach for in-process control monitoring. The peptide quantification method facilitates antigen-specific identification and quantification of combination vaccines in a single assay. This may contribute, as part of the consistency approach, to a reduction in the number of animal tests required for vaccine-batch release.
Keyphrases
- mass spectrometry
- dendritic cells
- liquid chromatography
- ms ms
- high performance liquid chromatography
- high throughput
- liquid chromatography tandem mass spectrometry
- emergency department
- tandem mass spectrometry
- immune response
- computed tomography
- pet ct
- pet imaging
- simultaneous determination
- ionic liquid
- data analysis
- drug induced