LC-MS/MS Coupled with a Stable-Isotope Dilution Method for the Quantitation of Thioproline-Glycine: A Novel Metabolite in Formaldehyde- and Oxidative Stress-Exposed Cells.
Guanrui PanYat-Hing HamHo Wai ChanJing YaoWan ChanPublished in: Chemical research in toxicology (2020)
Formaldehyde (FA) is a human carcinogen that is ubiquitous in the ambient environment and also generated endogenously in oxidatively stressed cells. There is accumulated evidence that FA is an etiological agent of leukemia development in humans. To develop a biomarker for FA exposure, we have, in this study, developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) coupled with stable isotope-dilution method to explore the reactivity of FA with glutathione (GSH) in physiologically relevant conditions. Interestingly, analysis of the reaction mixture by LC-MS/MS revealed exposure concentration- and duration-dependent formation of thioproline-glycine (SPro-Gly) produced by reaction of FA with cysteinyl-glycine (Cys-Gly) as a novel metabolite. Furthermore, dose-dependent formation of the thioproline adduct was observed in human cells separately exposed to FA and Fe2+-EDTA, a hydroxyl radical source. To the best of our knowledge, this is the first study reporting a thiazolidine carboxylic acid formed by reaction of FA and Cys-Gly is a major metabolite of FA. The results suggest a variety of GSH-derived thiazolidine metabolites may serve as potential biomarkers for FA and oxidative stress exposure, and the developed LC-MS/MS method provides a means for accurate determination of SPro-Gly as a dosimeter of oxidative stress and formaldehyde exposure.