Login / Signup

Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.

Mariano GarciaSassan SaatchiAntonio FerrazCarlos Alberto SilvaSusan UstinAlexander KoltunovHeiko Balzter
Published in: Carbon balance and management (2017)
Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m-2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m-2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m-2.
Keyphrases