Login / Signup

Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Neurotoxicity Drug Clioquinol by Sn(MoO4)2 Nanoplates.

Raj KarthikJeyaraj Vinoth KumarShen-Ming ChenKumar SeeranganChelladurai KaruppiahTse-Wei ChenVelluchamy Muthuraj
Published in: ACS applied materials & interfaces (2017)
Transition-metal molybdates have concerned enormous curiosity as supercapacitors, photocatalysts, and electrocatalysts. These materials are the best alternatives to noble-metal-based catalysts, which are generally show a limited photocatalytic and electrocatalytic activity. In addition, the antiprotozoal drug can usually pollute the environment through improper disposable and incomplete metabolism, and it is very dangerous to humans as well as aquatic animals. Therefore, here, we have studied the electrochemical determination and photodegradation of neurotoxicity clioquinol (CQL) by nanoplate-like tin molybdate (Sn(MoO4)2, denoted as SnM), which is used as both an electro- and a photocatalyst. The as-prepared catalyst delivered a highly efficient activity toward the detection and degradation of CQL. The proposed nanoplate-like SnM was prepared through a simple wet-chemical route, and its physicochemical properties were characterized by various spectroscopic and analytical techniques. As an electrochemical sensor, the SnM electrocatalyst exhibited tremendous activity for the detection of CQL in terms of lower potential and enhanced anodic peak current. In addition, it showed high selectivity, a wide linear concentration range, a lower detection limit, and good sensitivity. From the UV-vis spectroscopy study, the SnM photocatalyst delivered an excellent photocatalytic activity toward the degradation of CQL in terms of increasing contact time and reducing CQL concentration, resulting in the increasing of the degradation efficiency about 98% within 70 min under visible light irradiation and showing an appreciable stability by observation of the reusability of the catalyst.
Keyphrases