Oxygen Plasma Activation of Carbon Nanotubes-Interconnected Prussian Blue Analogue for Oxygen Evolution Reaction.
Yin-Chen LinCheng-Hsun ChuangLi-Yin HsiaoMin-Hsin YehKuo-Chuan HoPublished in: ACS applied materials & interfaces (2020)
To obtain renewable and clean fuels, exploration of effective electrocatalysts is highly desirable due to the sluggish kinetics of water splitting. In this study, the oxygen plasma-activated hybrid structure of Ni-Fe Prussian blue analogue (PBA) interconnected by carbon nanotubes (O-CNT/NiFe) is reported as a highly effective electrocatalytic material for the oxygen evolution reaction (OER). The electrocatalytic performance is significantly influenced by different mass ratios of CNTs to Ni-Fe PBA. Benefiting from the conductive and oxygen plasma-activated CNTs as well as ordered and distributed metal sites in the framework, the optimized O-CNT/NiFe 1:18 exhibits a competitive overpotential of 279 mV at a current density of 10 mA cm-2 and a low Tafel slope of 42.8 mV dec-1 in 1.0 M KOH. Furthermore, the composite shows superior durability for at least 100 h. These results suggest that the O-CNT/NiFe 1:18 possesses promising potential as a highly active electrocatalyst.