Login / Signup

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids.

Ilka SimonJulius HornungJuri BarthelJörg ThomasMaik FinzeRoland A FischerUlf Dietrich Kahlert
Published in: Beilstein journal of nanotechnology (2019)
NiGa is a catalyst for the semihydrogenation of alkynes. Here we show the influence of different dispersion times before microwave-induced decomposition of the precursors on the phase purity, as well as the influence of the time of microwave-induced decomposition on the crystallinity of the NiGa nanoparticles. Microwave-induced co-decomposition of all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in the ionic liquid [BMIm][NTf2] selectively yields small intermetallic Ni/Ga nanocrystals of 5 ± 1 nm as derived from transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and supported by energy-dispersive X-ray spectrometry (EDX), selected-area energy diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). NiGa@[BMIm][NTf2] catalyze the semihydrogenation of 4-octyne to 4-octene with 100% selectivity towards (E)-4-octene over five runs, but with poor conversion values. IL-free, precipitated NiGa nanoparticles achieve conversion values of over 90% and selectivity of 100% towards alkene over three runs.
Keyphrases