Login / Signup

Stilbenes, a Versatile Class of Natural Metabolites for Inflammation-An Overview.

Jameel Mohammed Al-KhayriRoseanne MascarenhasHimanshu Madapur HarishYashwanth GowdaVasantha Veerappa LakshmaiahPraveen NagellaMuneera Qassim Al-MssallemFatima Mohammed AlessaMustafa Ibrahim AlmaghaslaAdel Abdel-Sabour Rezk
Published in: Molecules (Basel, Switzerland) (2023)
Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.
Keyphrases