Login / Signup

Kinetic Monte Carlo Study of Li Intercalation in LiFePO4.

Penghao XiaoGraeme A Henkelman
Published in: ACS nano (2018)
Even as a commercial cathode material, LiFePO4 remains of tremendous research interest for understanding Li intercalation dynamics. The partially lithiated material spontaneously separates into Li-poor and Li-rich phases at equilibrium. Phase segregation is a surprising property of LiFePO4 given its high measured rate capability. Previous theoretical studies, aiming to describe Li intercalation in LiFePO4, include both atomic-scale density functional theory (DFT) calculations of static Li distributions and entire-particle-scale phase field models, based upon empirical parameters, studying the dynamics of the phase separation. Little effort has been made to bridge the gap between these two scales. In this work, DFT calculations are used to fit a cluster expansion for the basis of kinetic Monte Carlo calculations, which enables long time scale simulations with accurate atomic interactions. This atomistic model shows how the phases evolve in LixFePO4 without parameters from experiments. Our simulations reveal that an ordered Li0.5FePO4 phase with alternating Li-rich and Li-poor planes along the ac direction forms between the LiFePO4 and FePO4 phases, which is consistent with recent X-ray diffraction experiments showing peaks associated with an intermediate-Li phase. The calculations also help to explain a recent puzzling experiment showing that LiFePO4 particles with high aspect ratios that are narrower along the [100] direction, perpendicular to the [010] Li diffusion channels, actually have better rate capabilities. Our calculations show that lateral surfaces parallel to the Li diffusion channels, as well as other preexisting sites that bind Li weakly, are important for phase nucleation and rapid cycling performance.
Keyphrases