An organ deformation model using Bayesian inference to combine population and patient-specific data.
Øyvind Lunde RørtveitLiv Bolstad HysingAndreas Størksen StordalSara PilskogPublished in: Physics in medicine and biology (2023)
Objective. Organ deformation models have the potential to improve delivery and reduce toxicity of radiotherapy, but existing data-driven motion models are based on either patient-specific or population data. We propose to combine population and patient-specific data using a Bayesian framework. Our goal is to accurately predict individual motion patterns while using fewer scans than previous models. Approach. We have derived and evaluated two Bayesian deformation models. The models were applied retrospectively to the rectal wall from a cohort of prostate cancer patients. These patients had repeat CT scans evenly acquired throughout radiotherapy. Each model was used to create coverage probability matrices (CPMs). The spatial correlations between these estimated CPMs and the ground truth, derived from independent scans of the same patient, were calculated. Main results. Spatial correlation with ground truth were significantly higher for the Bayesian deformation models than both patient-specific and population-derived models with 1, 2 or 3 patient-specific scans as input. Statistical motion simulations indicate that this result will also hold for more than 3 scans. Significance. The improvement over previous models means that fewer scans per patient are needed to achieve accurate deformation predictions. The models have applications in robust radiotherapy planning and evaluation, among others.
Keyphrases
- computed tomography
- early stage
- radiation therapy
- end stage renal disease
- chronic kidney disease
- magnetic resonance imaging
- dual energy
- electronic health record
- radiation induced
- squamous cell carcinoma
- locally advanced
- big data
- positron emission tomography
- magnetic resonance
- molecular dynamics
- data analysis
- high speed
- ejection fraction
- patient reported outcomes
- deep learning
- prognostic factors
- artificial intelligence
- image quality
- monte carlo