Login / Signup

In situ measurement of the stiffness increase in the posterior sclera after UV-riboflavin crosslinking by optical coherence elastography.

Maria VinasXu FengGuo-Yang LiSeok-Hyun Yun
Published in: Biomedical optics express (2022)
Scleral crosslinking may provide a way to prevent or treat myopia by stiffening scleral tissues. The ability to measure the stiffness of scleral tissues in situ pre and post scleral crosslinking would be useful but has not been established. Here, we tested the feasibility of optical coherence elastography (OCE) to measure shear modulus of scleral tissues and evaluate the impact of crosslinking on different posterior scleral regions using ex vivo porcine eyes as a model. From measured elastic wave speeds at 6 - 16 kHz, we obtained out-of-plane shear modulus value of 0.71 ± 0.12 MPa (n = 20) for normal porcine scleral tissues. After riboflavin-assisted UV crosslinking, the shear modulus increased to 1.50 ± 0.39 MPa (n = 20). This 2-fold change was consistent with the increase of static Young's modulus from 5.5 ± 1.1 MPa to 9.3 ± 1.9 MPa after crosslinking, which we measured using conventional uniaxial extensometry on tissue stripes. OCE revealed regional stiffness differences across the temporal, nasal, and deeper posterior sclera. Our results show the potential of OCE as a noninvasive tool to evaluate the effect of scleral crosslinking.
Keyphrases
  • gene expression
  • high resolution
  • optical coherence tomography
  • high frequency
  • single cell
  • mass spectrometry
  • climate change