Login / Signup

Achieving Circularly Polarized Phosphorescence through Noncovalent Clipping of Metallotweezers.

Tingting HanJie RenSixun JiangFeng WangYukui Tian
Published in: Inorganic chemistry (2024)
Circularly polarized phosphorescent materials, based on host-guest complexation, have received significant attention due to their outstanding emission performance in solutions. Recent studies have primarily focused on macrocyclic host-guest complexes. To broaden the scope of this research, there is a keen pursuit of developing novel chiral phosphorescent host-guest systems. Metallotweezers with square-planar d 8 transition metal complexes emerge as promising candidates for achieving this objective. Specifically, metallotweezers, comprising platinum(II) terpyridine and gold(III) diphenylpyridine pincers on a diphenylpyridine scaffold, have been designed and synthesized. Due to the preorganization effect rendered by the diphenylpyridine scaffold, the resulting metallotweezers are capable of complexing with each other and forming quadruple stacking structures. The phosphorescent emission is enhanced owing to the synergistic rigidifying and shielding effects. Meanwhile, the steric effect of chiral (1 R ) pinene units on the platinum(II) terpyridine pincers results in a stereospecific twist for the quadruple stacking structures. Thus, the chirality transfers from the molecular to the supramolecular level. By a combination of phosphorescent enhancement and supramolecular chirality for the clipping complex, circularly polarized phosphorescent emission is achieved. Overall, noncovalent clipping of metallotweezers exemplified in the current study presents a novel and effective approach toward solution-processable circularly polarized phosphorescent materials.
Keyphrases