Inhibition of VEGFR-2 Phosphorylation and Effects on Downstream Signaling Pathways in Cultivated Human Endothelial Cells by Stilbenes from Vitis Spp.
Edwin Fernandez-CruzAna B CerezoEmma Cantos-VillarTristan RichardAna M TroncosoMaria Carmen García-ParrillaPublished in: Journal of agricultural and food chemistry (2019)
Stilbenes are phenolic compounds present in different higher plant families that have shown different biological activities, such as antioxidant properties and antitumoral and anti-atherosclerotic effects, among others. Angiogenesis is a key process involved in both cancer and cardiovascular diseases, the vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 being the main triggers. Certain polyphenol compounds, such as flavonoids, have shown a potent capacity to inhibit VEGF and, consequently, angiogenesis. The present work, therefore, aims to evaluate the potential effect of stilbenes on inhibiting VEGF and their subsequent effect on the downstream signaling pathway (PLCγ1, Akt, and eNOS). VEGFR-2 activation was studied through an ELISA assay in the HUVEC line, while the phosphorylation of intracellular downstream proteins PLCγ1, Akt, and eNOS was tested by Western blot. Student's t test was used to determine significant differences between samples. On the one hand, astringin, pallidol, and ω-viniferin showed the lowest IC50 values (2.90 ± 0.27, 4.42 ± 0.67, and 6.10 ± 1.29 μM, respectively) against VEGFR-2 activation. Additionally, VEGF-induced PLCγ1 phosphorylation was significantly inhibited by ε-viniferin, astringin, and ω-viniferin. However, ε-viniferin and pallidol simultaneously enhanced eNOS activation, proving to be via Akt activation in the case of ε-viniferin. For the first time, these data suggest that stilbenes such as astringin, pallidol, ω-viniferin, and ε-viniferin have a potential anti-angiogenic effect and they could be further considered as anti-VEGF ingredients in food and beverages. In addition, ε-viniferin and pallidol significantly allowed eNOS activation and could likely prevent the side effects caused by anti-VEGF hypertension drugs.
Keyphrases
- vascular endothelial growth factor
- endothelial cells
- signaling pathway
- high glucose
- pi k akt
- cell proliferation
- epithelial mesenchymal transition
- cardiovascular disease
- induced apoptosis
- human health
- oxidative stress
- nitric oxide
- blood pressure
- risk assessment
- south africa
- high throughput
- metabolic syndrome
- artificial intelligence
- anti inflammatory
- medical students
- monoclonal antibody
- deep learning
- lymph node metastasis