Noninvasive OCT angiography-based blood attenuation measurements correlate with blood glucose level in the mouse retina.
Kaiyuan LiuTiepei ZhuLin YaoZiyi ZhangHuakun LiJuan YePeng LiPublished in: Biomedical optics express (2021)
In this study, we investigated the correlation of the blood optical attenuation coefficient (OAC) and the blood glucose concentration (BGC). The blood OAC was measured in mouse retina in vivo by analyzing the depth attenuation of backscattered light under the guidance of OCT angiography (OCTA) vascular mapping, and then its correlation to the BGC was further investigated. The optical attenuation of the blood components presented a more reliable correlation to BGC than that of the background tissues. The arteries and veins presented a blood OAC change of ∼0.05-0.07 mm-1 per 10 mg/dl and a significant (P < 0.001) elevation of blood OAC in diabetic mice was observed. Furthermore, different kinds of vessels also presented different performances. The veins had a higher correlation coefficient (R=0.86) between the measured blood OAC and BGC than that of the arteries (R=0.73). Besides, the blood OAC changes of the specific vessels occur without any obvious change in the vascular morphology in the retina. The blood OAC-BGC correlation suggests a concept of non-invasive OCTA-based glucometry, allowing a fast assessment of the blood glucose of specific vessels with superior motion immunity. A direct glucometry of the retina would be helpful for accurately monitoring the progression of diabetic retinopathy.