Fine mapping of Ne1, the hybrid necrosis gene complementary to Ne2 in common wheat (Triticum aestivum L.).
Na LiQiuyi TanJinhua DingXinglai PanZhengqiang MaPublished in: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik (2021)
Apart from confinement of Ne1 to a 4.45 Mb genomic segment, markers closely linked to Ne2 were identified and incomplete dominance of both genes in conditioning necrosis severity was shown. Hybrid necrosis in plants is characterized by premature death of leaves or plants in F1 hybrids. Interaction of two complementary dominant genes Ne1 and Ne2 in wheat (Triticum aestivum L.) is known to cause hybrid necrosis. However, the mechanism underlying this necrosis is still elusive. To obtain markers closely-linked to these two genes, Ne1-carrying cultivar Zheng891 was crossed with Ne2-carrying cultivar Pan555. Using BC1F1 plants derived from crosses of the F1 plants with the two parental lines, Ne1 and Ne2 were mapped to a 2.2 cM interval and a 2.3 cM interval with newly developed markers, respectively. Ne1 was further delimited to a 0.19 cM interval using 2015 Ne2-carrying F2 plants. Xwgrc3146, Xwgrc3147 and Xwgrc3150, three of the four markers co-segregating with Ne1, were all Zheng891-dominant, suggesting that, compared with Pan555, Ne1 is located in a region with substantial sequence diversity. The Ne1 interval is syntenic to chromosomes 5H, 4, 9 and 2 of barley, Brachypodium distachyon, rice and sorghum, respectively, and corresponds to a 4.45 Mb Chinese Spring sequence. Variations in necrosis severity of the F2 plants differing in Ne1 and Ne2 genotypes implied that these two genes are incompletely dominant in determining the timing and severity of necrosis.