Overview on solubilization and lipid reconstitution of Na,K-ATPase: enzyme kinetic and biophysical characterization.
Juliana Sakamoto YonedaHeitor Gobbi SebinelliRosangela ItriPietro CiancagliniPublished in: Biophysical reviews (2020)
Na,K-ATPase is a membrane protein which plays a vital role. It pumps Na+ and K+ ions across the cellular membranes using energy from ATP hydrolysis, and is responsible for maintaining the osmotic equilibrium and generating the membrane potential. Moreover, Na,K-ATPase has also been involved in cell signaling, interacting with partner proteins. Cardiotonic steroids bind specifically to Na,K-ATPase triggering a number of signaling pathways. Because of its importance, many efforts have been employed to study the structure and function of this protein. Difficulties associated with its removal from natural membranes and the concomitant search for appropriate replacement conditions to keep the protein in solution have presented a challenge that had to be overcome prior to carrying out biophysical and biochemical studies in vitro. In this review, we summarized all of the methods and techniques applied by our group in order to obtain information about Na,K-ATPase in respect to solubilization, reconstitution into mimetic system, influence of lipid composition, stability, oligomerization, and aggregation.