Login / Signup

Preparation and Characterization of Guaiacol-Furfuramine Benzoxazine and Its Modification of Bisphenol A-Aniline Oxazine Resin.

Jing WangRi-Wei Xu
Published in: Polymers (2024)
A new type of benzoxazine resin has been synthesized using a natural phenol source, guaiacol, and a biomass amines, furfuramine. The synthesis conditions were optimized; when the reaction molar ratio of guaiacol, furfuramine, and polyformaldehyde was 1:1:4, the highest synthetic yield was reached. The product was characterized via testing using transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), mass spectrogram (MS), and nuclear magnetic resonance ( 1 H-NMR) to confirm its molecular structure. A differential scanning calorimetry (DSC) test was conducted to analyze the thermodynamic properties of the product, and the results showed that the product decomposed and evaporated at around 180 °C, making it impossible to achieve self-curing. However, the prepared guaiacol-furfuramine benzoxazine resin (GFZ) can be blended and cured in certain proportions with bisphenol A-aniline oxazine resin (BAZ) as a GFZ/BAZ binary system (5:95, 10:90, 20:80, and 40:60). Dynamic mechanical analysis (DMA) test results showed that when the content of GFZ was 10%, the storage modulus of the copolymer resin was greatly improved. After conducting impact strength tests on the copolymer resin, it was found that the toughness of the copolymer resin had improved, and the maximum impact strength had increased by nearly three times. This indicates that the flexible long-chain structure in GFZ can effectively improve the toughness of the cured copolymer system. The reaction of active groups on benzoxazine molecules with other resins can not only improve the mechanical properties of their cured products, but also has important significance in the preparation of low-cost and environmentally friendly sustainable composite materials with excellent comprehensive performance.
Keyphrases