Login / Signup

Two Indium Sulfate Tellurites: Centrosymmetric In2(SO4)(TeO3)(OH)2(H2O) and Non-centrosymmetric In3(SO4)(TeO3)2F3(H2O).

Ya-Ping GongYun-Xiang MaShao-Ming YingJiang Gao MaoFang Kong
Published in: Inorganic chemistry (2019)
Two new indium sulfate tellurites, namely, In2(SO4)(TeO3)(OH)2(H2O) and In3(SO4)(TeO3)2F3(H2O), were synthesized by hydrothermal method in a one-pot reaction. Their pure phase yields have been successfully optimized to 76% and 21%, respectively. In2(SO4)(TeO3)(OH)2(H2O) crystallized in centrosymmetric (CS) space group P21/n, while In3(SO4)(TeO3)2F3(H2O) formed a non-centrosymmetric (NCS) and chiral space group P212121. The CS compound features a 2D layered structure composed of 2D indium oxide layers decorated by sulfate tetrahedra and tellurite groups. The NCS compound displays a 3D network consisting of indium tellurite layers bridged by sulfate tetrahedra. Powder second harmonic generation measurements disclosed that In3(SO4)(TeO3)2F3(H2O) exhibits a weak frequency-doubling efficiency about 11% of the commercial KDP. Its powder laser damage threshold quantity was estimated to be 79.6 MW/cm2, which is about 36 times that of AGS. The two samples present wide optical band gaps of 4.86 and 4.10 eV, respectively, which were determined by Te, In, and O atoms based on density functional theory calculations.
Keyphrases
  • density functional theory
  • molecular dynamics
  • quantum dots
  • ionic liquid
  • network analysis