Login / Signup

Random Transfer of Ogataea polymorpha Genes into Saccharomyces cerevisiae Reveals a Complex Background of Heat Tolerance.

Taisuke SeikeYuki NarazakiYoshinobu KanekoHiroshi ShimizuFumio Matsuda
Published in: Journal of fungi (Basel, Switzerland) (2021)
Horizontal gene transfer, a process through which an organism acquires genes from other organisms, is a rare evolutionary event in yeasts. Artificial random gene transfer can emerge as a valuable tool in yeast bioengineering to investigate the background of complex phenotypes, such as heat tolerance. In this study, a cDNA library was constructed from the mRNA of a methylotrophic yeast, Ogataea polymorpha, and then introduced into Saccharomyces cerevisiae. Ogataea polymorpha was selected because it is one of the most heat-tolerant species among yeasts. Screening of S. cerevisiae populations expressing O. polymorpha genes at high temperatures identified 59 O. polymorpha genes that contribute to heat tolerance. Gene enrichment analysis indicated that certain S. cerevisiae functions, including protein synthesis, were highly temperature-sensitive. Additionally, the results confirmed that heat tolerance in yeast is a complex phenotype dependent on multiple quantitative loci. Random gene transfer would be a useful tool for future bioengineering studies on yeasts.
Keyphrases