Login / Signup

Double-Cavity Nor-Seco-Cucurbit[10]uril Enables Efficient and Rapid Separation of Pyridine from Mixtures of Toluene, Benzene, and Pyridine.

Ming LiuRan CenJisen LiQing LiZhu TaoXin XiaoLyle D Isaacs
Published in: Angewandte Chemie (International ed. in English) (2022)
Benzene, toluene and pyridine are widely used as essential raw materials in industry and laboratory research, with stringent purity requirements. Herein, we show that solid double-cavity host nor-seco-cucurbit[10]uril (ns-Q[10]) functions as an efficient adsorption separator for pyridine; benzene and toluene can be obtained in >99.9 % purity by this method. Thermal removal of pyridine from ns-Q[10]⋅Py 2 allows 10 separation cycles without erosion of performance. The geometry of the ns-Q[10]⋅Py 2 ternary complex was established by single-crystal X-ray diffraction methods. The ns-Q[10] cage facilitates the removal of pyridine from toluene and benzene, with >99.9 % purity for the separated compounds.
Keyphrases
  • dengue virus
  • liquid chromatography
  • high resolution
  • magnetic resonance imaging
  • mass spectrometry
  • reduced graphene oxide
  • contrast enhanced
  • solid state