Small interfering RNA (siRNA)-induced gene therapy has been recognized as a promising avenue for effective cancer treatment, while easy enzymatic degradation, poor transfection efficiency, nonspecific biodistribution, and uncontrolled release hinder its extensive clinical applications. Zeolitic imidazolate frameworks-8 (ZIF-8) have emerged as promising drug carriers without an in-depth exploration in programmable siRNA delivery. Herein, we report a multifunctional PDAs-ZIF-8 (PZ) nanoplatform for delivering siRNA with combined photothermal therapy (PTT) and gene therapy (GT) via the noninvasive guidance of photoacoustic (PA)/near-infrared (IR) dual-modal imaging. The ingenious PZ nanocarriers mediated the tumor-specific accumulation of therapeutic siRNA without undesired degradation and preleakage. The pH-responsive ZIF-8 decomposed in an acidic tumor microenvironment that was accompanied by the release of siRNA payloads for cleaving target mRNA in gene silencing therapy. Meanwhile, the polydopamine nanoparticles (PDAs) could simultaneously serve as a powerful noninvasive PA/IR imaging contrast agent and versatile photothermal agent for diagnosis-guided photogenetherapy. The systematic in vitro and in vivo experimental explorations demonstrated that our PDAs-siRNA-ZIF-8 (PSZ) could greatly enhance the therapeutic efficiency as compared with the corresponding PTT or GT monotherapy. This work holds great potential to advance the development of more intelligent diagnosis and therapeutic strategies, thus supplying promising smart nanomedicines in the near future.
Keyphrases
- cancer therapy
- gene therapy
- drug delivery
- high resolution
- photodynamic therapy
- fluorescence imaging
- hyaluronic acid
- drug release
- stem cells
- magnetic resonance
- hydrogen peroxide
- mass spectrometry
- open label
- computed tomography
- magnetic resonance imaging
- risk assessment
- clinical trial
- nitric oxide
- climate change
- positron emission tomography
- pet imaging
- optical coherence tomography
- stress induced