Login / Signup

Common Strategy: Mounting the Rod-like Ni-Based MOF on Hydrangea-Shaped Nickel Hydroxide for Superior Electrocatalytic Methanol Oxidation Reaction.

Shan LiuYa-Ya SunYa-Pan WuYan-Jiang WangQiu PiShuang LiYong-Shuang LiDong-Sheng Li
Published in: ACS applied materials & interfaces (2021)
Developing efficient metal-organic framework (MOF)-based electrocatalysts with improvable activity and persistence toward the methanol oxidation reaction (MOR) is attracting great research attention but still remains an enormous challenge. Herein, a facile strategy, hydrangea-shaped nickel hydroxide template-directed synthesis of the hierarchically structured Ni-MOF on the Ni(OH)2 heterocomposite (denoted as Ni-Ni) for efficient MOR, is developed. The unique hierarchical structure and synergistic effect of the heterocomposite afford more exposed active sites, a facile ion diffusion path, and improved conductivity, favorable for improving MOR catalytic performance. Remarkably, the optimized Ni-Ni-2 material delivers an excellent activity with a high peak current density (24.6 mA cm-2). Furthermore, to prove the universality of this strategy, NixCu1-x(OH)2 isometallic hydroxide was used as the precursor, and a series of MOF-74/CuxNi1-x(OH)2 (denoted as Ni-NiCu) heterogeneous materials have been prepared and could be used as an effective electrocatalyst to catalyze MOR. The results indicate that this strategy can be used in the synthesis of other new composite materials with specific hierarchical structures for a more efficient electrocatalytic system.
Keyphrases
  • metal organic framework
  • reduced graphene oxide
  • preterm infants
  • nitric oxide
  • working memory
  • drug delivery
  • high resolution
  • gold nanoparticles
  • carbon dioxide
  • electron transfer
  • molecularly imprinted
  • aqueous solution