Login / Signup

Circulating microparticles are increased amongst people presenting with HIV and advanced immune suppression in Malawi and correlate closely with arterial stiffness: a nested case control study.

Christine KellyRijan GurungRaphael Kamng'onaIrene ShehaMishek ChammudziKondwani C JamboJane MallewaAlicja RapalaRobert Simon HeydermanPatrick MallonHenry C MwandumbaSaye KhooNigel Klein
Published in: Wellcome open research (2021)
Background: We aimed to investigate whether circulating microparticle (CMPs) subsets were raised amongst people presenting with human immunodeficiency virus (HIV) and advanced immune suppression in Malawi, and whether they associated with arterial stiffness. Methods: Antiretroviral therapy (ART)-naïve adults with a new HIV diagnosis and CD4 <100 cells/µL had microparticle characterisation and carotid femoral Pulse Wave Velocity (cfPWV) at 2 weeks post ART initiation. HIV uninfected controls were matched on age, systolic blood pressure (BP) and diastolic BP in a 1:1 ratio.  Circulating microparticles were identified from platelet poor plasma and stained for endothelial, leucocyte, monocyte and platelet markers. Results: The median (IQ) total CMP count for 71 participants was 1 log higher in HIV compared to those without (p<0.0001) and was associated with arterial stiffness (spearman rho 0.47, p<0.001). In adjusted analysis, every log increase in circulating particles showed a 20% increase in cfPWV (95% confidence interval [CI] 4 - 40%, p=0.02). In terms of subsets, endothelial and platelet derived microparticles were most strongly associated with HIV. Endothelial derived E-selectin+ CMPs were 1.3log-fold higher and platelet derived CD42a+ CMPs were 1.4log-fold higher (both p<0.0001). Endothelial and platelet derived CMPs also correlated most closely with arterial stiffness (spearman rho: E-selectin+ 0.57 and CD42a 0.56, both p<0.0001). Conclusions: Circulating microparticles associate strongly with arterial stiffness among people living with HIV in Malawi. Endothelial damage and platelet microparticles are the predominant cell origin types and future translational studies could consider prioritising these pathways.
Keyphrases