Login / Signup

Iminologous epoxide ring-closure.

Chieh-Hung TienAlan J LoughAndrei K Yudin
Published in: Chemical science (2022)
The discovery of new reactions enables chemists to attain a better understanding of fundamental chemical reactivity and push the boundaries of organic synthesis. Our understanding and manipulation of high-energy states such as reactive conformations, intermediates, and transition structures contribute to this field. Herein we interrogate epoxide ring-closure by inserting the C[double bond, length as m-dash]N functionality into a well-known precursor to nucleophilic epoxide ring-closure. The synthesis of tetrasubstituted, nitrile-tethered epoxides takes place via activation of iminologous diols followed by fragmentation. Mechanistic study reveals the transformation to be stereospecific, which is consistent with the concerted nature of the epoxide ring-closure.
Keyphrases
  • high resolution
  • high throughput
  • mass spectrometry
  • single cell