Login / Signup

Borylative Heterocyclization without Air-Free Techniques.

Chao GaoShuichi NakaoSuzanne A Blum
Published in: The Journal of organic chemistry (2020)
In contrast to previously reported borylative heterocyclization methods, a reaction here proceeds without air-free techniques to access synthetically useful borylated thiophenes, benzothiophenes, and isocoumarins. A comparison of stability/decomposition rates in air of several catecholboronic ester (Bcat) compounds derived from different heterocycle cores showed a strong dependence on the heterocycle structure. Lessons learned from this comparison were then harnessed for the development of borylative heterocyclization reactions under ambient-atmosphere conditions and with wet solvent. In contrast to literature reports suggesting general moisture sensitivity, a subset of Bcat products resulting from this technique were chromatography-stable and directly isolable, obviating the requirement for an extra synthetic transformation into more stable boron species, such as pinacolboronic esters (Bpin), for isolation. The isolated Bcat products were amenable to various downstream functionalization reactions, including reactions that were not accessible with their better-known Bpin counterparts, showing the complementarity of Bcat reaction partners and expanding their known chemistry. These results suggest the value of conceptual revisitation of substitution and solvent influence on stability and isolability of organo-Bcat compound classes and lay the groundwork for development of additional practical borylative methods in air.
Keyphrases
  • magnetic resonance
  • ionic liquid
  • systematic review
  • air pollution
  • particulate matter
  • mass spectrometry
  • contrast enhanced
  • high performance liquid chromatography
  • antiretroviral therapy