Mutant KRAS mediates circARFGEF2 biogenesis to promote lymphatic metastasis of pancreatic ductal adenocarcinoma.
Yao KongYuming LuoShangyou ZhengJiabin YangDingwen ZhangYue ZhaoHanhao ZhengMingjie AnYan LinLe AiXiayao DiaoQing LinChanghao ChenRufu ChenPublished in: Cancer research (2023)
Circular RNAs (circRNAs) contribute to cancer stemness, proliferation, and metastasis. The biogenesis of circRNAs can be impacted by the genetic landscape of tumors. Herein, we identified a novel circRNA, circARFGEF2 (hsa_circ_0060665), which was upregulated in KRASG12D pancreatic ductal adenocarcinoma (PDAC) and positively associated with KRASG12D PDAC lymph node (LN) metastasis. CircARFGEF2 overexpression significantly facilitated KRASG12D PDAC LN metastasis in vitro and in vivo. Mechanistically, circARFGEF2 biogenesis in KRASG12D PDAC was significantly activated by the alternative splicing factor QKI-5, which recruited U2AF35 to facilitate spliceosome assembly. QKI-5 bound the QKI binding motifs and neighboring reverse complement sequence in intron 3 and 6 of ARFGEF2 pre-mRNA to facilitate circARFGEF2 biogenesis. CircARFGEF2 sponged miR-1205 and promoted the activation of JAK2, which phosphorylated STAT3 to trigger KRASG12D PDAC lymphangiogenesis and LN metastasis. Importantly, circARFGEF2 silencing significantly inhibited LN metastasis in the KrasG12D/+Trp53R172H/+Pdx-1-Cre (KPC) mouse PDAC model. These findings provide insight into the mechanism and metastasis-promoting function of mutant KRAS-mediated circRNA biogenesis.