Enhancing the Predictive Performance of Credibility-Based Fake News Detection Using Ensemble Learning.
Amit Neil RamkissoonWayne GoodridgePublished in: The review of socionetwork strategies (2022)
Fake news detection continues to be a major problem that affects our society today. Fake news can be classified using a variety of methods. Predicting and detecting fake news has proven to be challenging even for machine learning algorithms. This research employs Legitimacy, a unique ensemble machine learning model to accomplish the task of Credibility-Based Fake News Detection. The Legitimacy ensemble combines the learning potential of a Two-Class Boosted Decision Tree and a Two-Class Neural Network. The ensemble technique follows a pseudo-mixture-of-experts methodology. For the gating model, an instance of Two-Class Logistic Regression is implemented. This study validates Legitimacy using a standard dataset with features relating to the credibility of news publishers to predict fake news. These features are analysed using the ensemble algorithm. The results of these experiments are examined using four evaluation methodologies. The analysis of the results reveals positive performance with the use of the ensemble ML method with an accuracy of 96.9%. This ensemble's performance is compared with the performance of the two base machine learning models of the ensemble. The performance of the ensemble surpasses that of the two base models. The performance of Legitimacy is also analysed as the size of the dataset increases to demonstrate its scalability. Hence, based on our selected dataset, the Legitimacy ensemble model has proven to be most appropriate for Credibility-Based Fake News Detection.