Login / Signup

Magnetoelectric Memory Based on Ferromagnetic/Ferroelectric Multiferroic Heterostructure.

Jiawei WangAitian ChenPeisen LiSen Zhang
Published in: Materials (Basel, Switzerland) (2021)
Electric-field control of magnetism is significant for the next generation of large-capacity and low-power data storage technology. In this regard, the renaissance of a multiferroic compound provides an elegant platform owing to the coexistence and coupling of ferroelectric (FE) and magnetic orders. However, the scarcity of single-phase multiferroics at room temperature spurs zealous research in pursuit of composite systems combining a ferromagnet with FE or piezoelectric materials. So far, electric-field control of magnetism has been achieved in the exchange-mediated, charge-mediated, and strain-mediated ferromagnetic (FM)/FE multiferroic heterostructures. Concerning the giant, nonvolatile, and reversible electric-field control of magnetism at room temperature, we first review the theoretical and representative experiments on the electric-field control of magnetism via strain coupling in the FM/FE multiferroic heterostructures, especially the CoFeB/PMN-PT [where PMN-PT denotes the (PbMn1/3Nb2/3O3)1-x-(PbTiO3)x] heterostructure. Then, the application in the prototype spintronic devices, i.e., spin valves and magnetic tunnel junctions, is introduced. The nonvolatile and reversible electric-field control of tunneling magnetoresistance without assistant magnetic field in the magnetic tunnel junction (MTJ)/FE architecture shows great promise for the future of data storage technology. We close by providing the main challenges of this and the different perspectives for straintronics and spintronics.
Keyphrases
  • room temperature
  • ionic liquid
  • heart failure
  • molecularly imprinted
  • electronic health record
  • machine learning
  • high throughput
  • aortic valve
  • working memory
  • visible light
  • single cell
  • deep learning