With the advancements in conventional treatment modalities such as radiation, chemotherapy, and surgery, as well as the emergence of immunotherapy, the overall cure rate for solid tumor malignancies has experienced a significant increase. However, it is unfortunate that exposure to cancer treatments can have detrimental effects on the function of osteoblasts and osteoclasts, disturbing bone metabolic homeostasis in patients, as well as causing damage to bone marrow cells and other bone tissues. Consequently, certain tumor treatment options may pose a risk for subsequent bone diseases. Common bone disorders associated with cancer treatment include osteonecrosis, bone loss, and secondary bone tumors. (1)Cancer treatment-related osteonecrosis is primarily linked to the use of radiation therapy and certain chemicals, such as bisphosphonates, denosumab, antiangiogenic agents, and immunomodulators. It has been observed that high-dose radiation therapy is more likely to result in osteonecrosis. (2)Chemicals and hormones, particularly sex hormones, glucocorticoids, and thyroid hormones or thyrotropic hormones, are among the factors that can contribute to cancer treatment-related bone loss. (3)Secondary bone tumors differ from metastases originating from primary tumors, and radiotherapy plays a significant role in their development, while chemotherapy may also exert some influence. Radiogenic secondary bone tumors are predominantly malignant, with osteosarcoma being the most common type. Chemotherapy may be a risk factor for the relatively rare occurrence of secondary Ewing sarcoma of the bone. These treatment-related bone disorders have a considerable adverse impact on the prognosis of cancer patients. Hence, it is imperative to prioritize the bone health of patients undergoing cancer treatment and give it further attention.
Keyphrases
- bone loss
- bone mineral density
- radiation therapy
- soft tissue
- postmenopausal women
- bone marrow
- bone regeneration
- high dose
- locally advanced
- public health
- low dose
- body composition
- emergency department
- gene expression
- minimally invasive
- early stage
- coronary artery disease
- end stage renal disease
- risk factors
- young adults
- percutaneous coronary intervention
- newly diagnosed
- acute coronary syndrome
- cell death
- induced apoptosis
- social media
- papillary thyroid
- climate change