The titer of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies (NAbs) in the human body is an essential reference for evaluating the acquired protective immunity and resistance to SARS-CoV-2 infection. In this study, a fluorescence-quenching lateral flow immunoassay (FQ-LFIA) is established for quantitative detection of anti-SARS-CoV-2 NAbs in the sera of individuals who are vaccinated or infected within 10 min. The ultrabright aggregation-induced emission properties encapsulated in nanoparticles, AIE 490 NP, are applied in the established FQ-LFIA with gold nanoparticles to achieve a fluorescence "turn-on" competitive immunoassay. Under optimized conditions, the FQ-LFIA quantitatively detected 103 positive and 50 negative human serum samples with a limit of detection (LoD) of 1.29 IU mL -1 . A strong correlation is present with the conventional pseudovirus-based virus neutralization test (R 2 = 0.9796, P < 0.0001). In contrast, the traditional LFIA with a "turn-off" mode can only achieve a LoD of 11.06 IU mL -1 . The FQ-LFIA showed excellent sensitivity to anti-SARS-CoV-2 NAbs. The intra- and inter-assay precisions of the established method are below 15%. The established FQ-LFIA has promising potential as a rapid and quantitative method for detecting anti-SARS-CoV-2 NAbs. FQ-LFIA can also be used to detect various biomarkers.
Keyphrases
- sars cov
- sensitive detection
- respiratory syndrome coronavirus
- loop mediated isothermal amplification
- quantum dots
- gold nanoparticles
- energy transfer
- coronavirus disease
- fluorescent probe
- single molecule
- living cells
- endothelial cells
- magnetic resonance
- high resolution
- label free
- magnetic resonance imaging
- real time pcr
- high throughput
- risk assessment
- mass spectrometry
- reduced graphene oxide