Login / Signup

Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase.

Zuodong SunCooper S JamiesonMasao OhashiKendall N HoukYi Tang
Published in: Nature communications (2022)
Pericyclases, enzymes that catalyze pericyclic reactions, form an expanding family of enzymes that have biocatalytic utility. Despite the increasing number of pericyclases discovered, the Diels-Alder cyclization between a cyclopentadiene and an olefinic dienophile to form norbornene, which is among the best-studied cycloadditions in synthetic chemistry, has surprisingly no enzymatic counterpart to date. Here we report the discovery of a pathway featuring a norbornene synthase SdnG for the biosynthesis of sordaricin-the terpene precursor of antifungal natural product sordarin. Full reconstitution of sordaricin biosynthesis reveals a concise oxidative strategy used by Nature to transform an entirely hydrocarbon precursor into the highly functionalized substrate of SdnG for intramolecular Diels-Alder cycloaddition. SdnG generates the norbornene core of sordaricin and accelerates this reaction to suppress host-mediated redox modifications of the activated dienophile. Findings from this work expand the scopes of pericyclase-catalyzed reactions and P450-mediated terpene maturation.
Keyphrases
  • small molecule
  • high throughput
  • cell wall
  • candida albicans
  • hydrogen peroxide
  • room temperature
  • quantum dots
  • nitric oxide
  • mass spectrometry
  • high resolution
  • energy transfer
  • ionic liquid
  • solid state