Login / Signup

Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures.

Canan SenerAli Hussain MotagamwalaDavid Martin AlonsoJames A Dumesic
Published in: ChemSusChem (2018)
High yields of furfural (>90 %) were achieved from xylose dehydration in a sustainable solvent system composed of γ-valerolactone (GVL), a biomass derived solvent, and water. It is identified that high reaction temperatures (e.g., 498 K) are required to achieve high furfural yield. Additionally, it is shown that the furfural yield at these temperatures is independent of the initial xylose concentration, and high furfural yield is obtained for industrially relevant xylose concentrations (10 wt %). A reaction kinetics model is developed to describe the experimental data obtained with solvent system composed of 80 wt % GVL and 20 wt % water across the range of reaction conditions studied (473-523 K, 1-10 mm acid catalyst, 66-660 mm xylose concentration). The kinetic model demonstrates that furfural loss owing to bimolecular condensation of xylose and furfural is minimized at elevated temperature, whereas carbon loss owing to xylose degradation increases with increasing temperature. Accordingly, the optimal temperature range for xylose dehydration to furfural in the GVL/H2 O solvent system is identified to be from 480 to 500 K. Under these reaction conditions, furfural yield of 93 % is achieved at 97 % xylan conversion from lignocellulosic biomass (maple wood).
Keyphrases
  • saccharomyces cerevisiae
  • ionic liquid
  • solar cells
  • electronic health record
  • machine learning
  • anaerobic digestion
  • artificial intelligence
  • deep learning