Login / Signup

Co-Immobilization of Laccase and Mediator into Fe-Doped ZIF-8 Significantly Enhances the Degradation of Organic Pollutants.

Zixuan LiQinghong ShiXiaoyan DongYan Sun
Published in: Molecules (Basel, Switzerland) (2024)
Co-immobilization of laccase and mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) for wastewater treatment could simultaneously achieve the reusability of laccase and avoid secondary pollution caused by the toxic ABTS. Herein, Fe-induced mineralization was proposed to co-immobilize laccase and ABTS into a metal-organic framework (ZIF-8) within 30 min. Immobilized laccase (Lac@ZIF-8-Fe) prepared at a 1:1 mass ratio of Fe 2+ to Zn 2+ exhibited enhanced catalytic efficiency (2.6 times), thermal stability, acid tolerance, and reusability compared to free laccase. ABTS was then co-immobilized to form Lac+ABTS@ZIF-8-Fe (ABTS = 261.7 mg/g). Lac@ZIF-8-Fe exhibited significantly enhanced bisphenol A (BPA) removal performance over free laccase due to the local substrate enrichment effect and improved enzyme stability. Moreover, the Lac+ABTS@ZIF-8-Fe exhibited higher BPA removal efficiency than the free laccase+ABTS system, implying the presence of a proximity effect in Lac+ABTS@ZIF-8-Fe. In the successive malachite green (MG) removal, the MG degradation efficiency by Lac@ZIF-8-Fe was maintained at 96.6% at the fifth reuse with only an extra addition of 0.09 mM ABTS in each cycle. As for Lac+ABTS@ZIF-8-Fe, 58.5% of MG was degraded at the fifth cycle without an extra addition of ABTS. Taken together, this research has provided a novel strategy for the design of a co-immobilized laccase and ABTS system for the degradation of organic pollutants.
Keyphrases
  • metal organic framework
  • wastewater treatment
  • aqueous solution
  • visible light
  • heavy metals
  • oxidative stress
  • highly efficient
  • magnetic nanoparticles
  • air pollution
  • high glucose
  • antibiotic resistance genes